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Introduction and perspective

“ICESKATE”
o : , ”"'

Spencer Apollonio, Yale Univ. Summer 1957; T-3 Ice Island.
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Hydrobiological Measurements on
IGY Drifting Station Bravo

The following report 1s based on material
supplied by Spencer Apollonio, Yale Uns-
versity. The IGY work it describes was
supported by the Air Force Cambridge Re-
search Center and the Woods Hole Oceano-
graphic Institution.

Environmental Conditions

The drift of Station Bravo during this
study was along the edge of the continental
shelf, within 100 miles of the north coast

of the Canadian Arctic Archipelago (see
Bulletin No. 24). The ice island itself is es-
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During the summer snow-free period, ex-
tensive melt-water lakes cover the pack ice.
Preliminary evidence from IGY Driiting
Station Alpha (on an ice floe elsewhere 1n
the Aretic Qcean) indiecates that these lakes
may act as lenses, concentrating light
through the ice and increasing organie pro-
ductivity below them.
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Fia. 12. Average Thickness of Snow Cover and Average Amounts of Incident Solar Radiation,
Photosynthesis, and Chlorophyll o, Summer 1967, at IGY Drifting.
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Changes in Pan-Arctic Annual Productivity

-Suggested 38% increase
-What is responsible for this increase?
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Arctic Annual Production (Tg C)

y =11.168x + 354.24
R?=0.6013

* Lower ice cover and longer growing seasons play a role

* Increased nutrient supply also must be important
- Greater shelf-break upwelling as sea ice retreats?
- Increased eddy activity?
- Intensified advection of nutrients from Bering Strait?



~ What is the impact of climate change s AN
anthropogenic) on the biogeochemistry and
ecology of the Chukchi and Beaufort seas?
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ICESCAPE

When?
June 15 - July 21, 2010
& September 2011

June
apid CTD survey

June 23-27
(sta tions more numerous than shown)

Where?

Start in Dutch Harbor, AK
Cruise to Bering Strait
Beaufort/Chukchi Sea

- Continental shelf

- Canada Basin
Sea ice sampling
Back through Bering Strait
End In Seward, AK

UNITED



ICESCAPE- Investigators

Physical Oceanography/modeling:

Bob Pickart — XBTs, ADCP, eddies

Jim Swift — CTD, O,, salinity

Mike Steele— Bio-ARGO floats (hydrographic measurements)

Jinlun Zhang — 3D coupled physical-chemical-biological ice-ocean
modeling

Biological Oceanography/Biogeochemistry:

Kevin Arrigo, Greg Mitchell, Barney Balch — Carbon fixation,
microalgal abundance (ice and water column), physiology

Sam Laney/Heidi Sosik — Phytoplankton community composition

Eva Ortega-Retuerta - Bacterial production

Claudia Benitez-Nelson- Export fluxes with thorium

Patricia Matrai- Bio-ARGO Floats (chlorophyll, optics, nitrate, O,)



ICESCAPE-Investigators (cont.)

Chemical Oceanography:

Nick Bates — Carbon cycle measurements (e.g. DIC, alkalinity)

Jim Swift — Nutrients (e.g. NO3, NO2, NH4, PO4 , Si03), 02, salinity

Optical Oceanography:

Greg Mitchell, Barney Balch, Stan Hooker — Spectral Lu, Ed, AOPs, I0Ps, underway
IOPs

Rick Reynolds and Dariusz Stramski — Particle size distribution, bb, volume
scattering, SPM

Atsushi Matsuoka — absorption of CDOM

Robert Frouin — Atmospheric correction

Sea lce:

Don Perovich, Bonnie Light — Concentration, thickness, salinity, snow cover, optical
properties

Karen Frey — CDOM, DOC, O2 isotopes

Modeling:

Jinlun Zhang- modeling bloom onset
Robert Frouin — Modeling primary productivity (PISCES model)






Revised circulation scheme of high-nutrient winter water

Hannah Shoal

70°N T
170°W 168° 166° 164° 162° 160° 158° 156°

Pickard, WHOI

Based on the ICESCAPE hydrographic/velocity surveys



Schematic of upwelling at the shelfbreak due to easterly winds

distance offshore (km)
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Arctic Phytoplankton Productivity:

Bio-float observations in ice-covered waters

P. Matrail, M. Steele?, D.Swift?, S. Riser?, K. Johnson3 and J. Nutt!
1Bigelow Laboratory for Ocean Sciences, 2University of Washington, 3SMBAR
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2011 Under-Ice Bloom Stations

Station 57
mixed layer HH H.< I SRP (umolm-2)
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Quantify C Export Rate

. C “export” averages ” 50% of DIC deficit

' from
. m ||n,15—17TgC|ost . |
ét\aiche shgehc water column (with active

blooms still ongoing)
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Ice Waters|

lce Cores -0.97 = 0.9
Under Ice Waters -2.8 = 0.8

Lee Cooper, UMCES



Depth (m)

Bates et al., 2013

Western Arctic OA Impacts
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ICESCAPE - Sea ice studies
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Imvacts of a declining Arctic sea ice cover on the
photodegradation of dissolved organic matter
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Optical detection of particle concentration, composition,
and size within Arctic waters

orracE Waters at
three locations
during the 2011
. _ ICESCAPE cruise.
Colville River
Beaufort Sea
L
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Particle diameter D [ um ]
Rick A. Reynolds and Dariusz Stramski, SIO, UCSD



+CDOM and DOC estimates using semi-analytical

[Matsuoka et al., 2013b]
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In situ ICESCAPE match-ups measured with in situ radiometry

(not a problem with a satellite)
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MODIS-Aqua ICESCAPE match-ups
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Merge IFCB-derived and FCM C cell carbon estimates

E.g., which taxa contribute most to algal C - e attributed to
biomass in the Chuk '2 '\\ioh images of algal cells, chains, & e ice bloom?
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Icescape 2011. Phytoplankton-bacteria coupling in the under-ice
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Biological Model
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MODEL SIMULATIONS SHOW:
. Melt ponds enhance annual NPP compared to bare ice

due to formation of under-ice blooms
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BIOMAS surface [chlorophyll-a] on July 4, 2011
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Primary Production (Tg C/d)

Modeled Primary production under ice in the Arctic
(ORCAZ2/LIM2/PISCES configuration of the NEMO GCM)

1968—-2007/ Top 100m Depth Integ 66.5°N—90°N

1 —— Open Water: 399.3 + 35.9

—— Total Area: 604.3 + 27.7 (Tg C/yr)

- Under Sea Ice: 204.9 =+ 18.0
— 100% Sea Ice: 141.5 £ 19.9

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Frouin, SIO



Nitrate deficit- Apollonio, 1959

«Apollonio didn’t see the chlorophyll
that we did, nor the productivity
+However, the nitrate drawdown was
3 smoking gun 1o potentially high

production
. He didn’t have enough data to judge

the legitimacy of such a wildly high
production value!

DEPTH / METERS

‘OUE 0 Wi
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So from “ICESKATE” to “ICESCAPE”,
science has come full
circle...ICESCAPE unequivocally
demonstrated presence of massive
under-ice algal blooms only hinted at
57 years earlier!

Mar Biol
DOT 101007 /00227-013-2181-0

ORIGINAL PAPER

New estimates of microalgae production based upon nitrate
reductions under sea ice in Canadian shelf seas
and the Canada Basin of the Arctic Ocean

Patricia Matrai - Spencer Apollonio

Received: 16 March 2012/ Accepted: 19 January 2013
© Spnnger-Verlag Berlin Heidelberg 2013










Summary-Main points

Physics
The pathways of winter water across the Chukchi
shelf have been clarified

Shelfbreak upwelling leads to significant primary
production

NSTM (Near Surface Temperature Maximum) is the
“world’s newest water mass.”

First ever Arctic ARGO bio-floats with ice avoidance
algorithm, survive stratification and function under
sea ice, 0-1000m, 20+ months!



Summary-Main points

Biogeochemistry/Chemistry

If 2011 ice sheets were to melt they would decrease overall
Phosphorous concentrations in the Arctic mixed layer.

~50% of primary productivity is exported vertically

~58% of the Pacific-origin NO; in the Canada Basin was newly
nitrified on the Chukchi shelf, rather than from the Bering Sea

Values for oxygen isotopes in Arctic sea ice, interface waters,
melt ponds and under-ice waters have been identified for first
time.

Ocean Acidification- At least 40% of the Chukchi Sea benthos

is exposed to bottom waters that are corrosive to CaCO3
during summertime




Summary-Main points

Optics and Bio-optics
Light transmittance through ponded ice is 3-10 X greater than

through bare ice and first-year ice has lower light extinction
than multiyear ice (both for bare and ponded ice)

Solar UV-induced photooxidation of CDOM (a,,s,) ranged
from ~48-62% whereas the percent loss in DOC was only ~0—-
8%.

First measurements of particle size distribution for oceanic
submicron particles in native state

Arctic Shelf DOC budget now indicates largest sources of
terrestrially-derived DOC to Arctic (presumably associated
with melting tundra)

Semi-analytical algorithm approaches remove biases in
chlorophyll and IOPs




Summary-Main points

Biology

Chlorophyll biomass up to ~1300 mg Chl m= in under-ice
bloom (higher than any depth-integrated biomass in NASA
Sea BASS (n=12,048!)

NPP 1.2-4.8 gC m2 d!
Phytoplankton growth rates of 0.83-1.44 d-! (at -1.6°C!!)

Coccolithophore calcification, <1% of photosynthesis and
combined evidence shows unequivocal proof of
coccolithophores in and under the Arctic ice cap

Imaging Flow Cytobot and Flow Cytometry summed cell Cis
typically ~% of bottle POC (i.e. on average, ~50% of POC is

detritus)

Bacterial biomass typically 11% of phytoplankton biomass,
only 3.5% inside under-ice bloom



Summary-Main points

* Modeling

* Key change: a large Under-ice bloom =
reduced marginal ice zone bloom because no
nutrients left after such an under-ice bloom

 BIOMAS model captures the basic features of
ICESCAPE observed under-ice blooms



